Local Focus – Global Reach learn more about Kudos 365

Share, Engage & Explore with Kudos 365

Posted by Specola

Your avatar

Zeta Oph: Runaway Star

Posted by Specola • Posted on 02/02/2020 at 12:16PM Photography See more by Specola

NASA Astronomy Picture of the Day:

Like a ship plowing through cosmic seas, runaway star Zeta Ophiuchi produces the arcing interstellar bow wave or bow shock seen in this stunning infrared portrait. In the false-color view, bluish Zeta Oph, a star about 20 times more massive than the Sun, lies near the center of the frame, moving toward the left at 24 kilometers per second. Its strong stellar wind precedes it, compressing and heating the dusty interstellar material and shaping the curved shock front. What set this star in motion? Zeta Oph was likely once a member of a binary star system, its companion star was more massive and hence shorter lived. When the companion exploded as a supernova catastrophically losing mass, Zeta Oph was flung out of the system. About 460 light-years away, Zeta Oph is 65,000 times more luminous than the Sun and would be one of the brighter stars in the sky if it weren't surrounded by obscuring dust. The image spans about 1.5 degrees or 12 light-years at the estimated distance of Zeta Ophiuchi. Last week, NASA placed the Spitzer Space Telescope in safe mode, ending its 16 successful years of studying our universe. News: NASA’s Spitzer Space Telescope Ends Mission of Astronomical Discovery

Your avatar

LDN 1622: Dark Nebula in Orion

Posted by Specola • Posted on 02/21/2020 at 12:16PM Photography See more by Specola

NASA Astronomy Picture of the Day:

The silhouette of an intriguing dark nebula inhabits this cosmic scene. Lynds' Dark Nebula (LDN) 1622 appears against a faint background of glowing hydrogen gas only visible in long telescopic exposures of the region. In contrast, the brighter reflection nebula vdB 62 is more easily seen, just above and right of center. LDN 1622 lies near the plane of our Milky Way Galaxy, close on the sky to Barnard's Loop, a large cloud surrounding the rich complex of emission nebulae found in the Belt and Sword of Orion. With swept-back outlines, the obscuring dust of LDN 1622 is thought to lie at a similar distance, perhaps 1,500 light-years away. At that distance, this 1 degree wide field of view would span about 30 light-years. Young stars do lie hidden within the dark expanse and have been revealed in Spitzer Space telescope infrared images. Still, the foreboding visual appearance of LDN 1622 inspires its popular name, the Boogeyman Nebula.

Photo by Min Xie

Your avatar

Trifecta at Twilight

Posted by Specola • Posted on 02/20/2020 at 12:16PM Photography See more by Specola

NASA Astronomy Picture of the Day:

On February 18, as civil twilight began in northern New Mexico skies, the International Space Station, a waning crescent Moon, and planet Mars for a moment shared this well-planned single field of view. From the photographer's location the sky had just begun to grow light, but the space station orbiting 400 kilometers above the Earth was already bathed in the morning sunlight. At 6:25am local time it took about a second to cross in front of the lunar disk moving right to left in the composited successive frames. At the time, Mars itself had already emerged from behind the Moon following its much anticipated lunar occultation. The yellowish glow of the Red Planet is still in the frame at the upper right, beyond the Moon's dark edge.

Photo by Paul Schmit

Your avatar

UGC 12591: The Fastest Rotating Galaxy Known

Posted by Specola • Posted on 02/19/2020 at 12:16PM Photography See more by Specola

NASA Astronomy Picture of the Day:

Why does this galaxy spin so fast? To start, even identifying which type of galaxy UGC 12591 is difficult -- featured on the lower left, it has dark dust lanes like a spiral galaxy but a large diffuse bulge of stars like a lenticular. Surprisingly observations show that UGC 12591 spins at about 480 km/sec, almost twice as fast as our Milky Way, and the fastest rotation rate yet measured. The mass needed to hold together a galaxy spinning this fast is several times the mass of our Milky Way Galaxy. Progenitor scenarios for UGC 12591 include slow growth by accreting ambient matter, or rapid growth through a recent galaxy collision or collisions -- future observations may tell. The light we see today from UGC 12591 left about 400 million years ago, when trees were first developing on Earth.

Show Off Your Work

Join Kudos to share your expertise

Kudos 365 gives you an online platform to showcase your photography and reach a broader audience.

Feedback